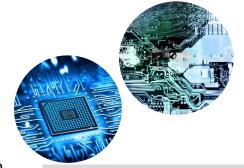
「SOIL」「D-Square」を中心とした 熊本大学の今後の展開について

半導体関連施策(半導体研究・教育施設の整備)

半導体研究・教育施設の新設



SOIL(ソイル)(Semiconductor Open Innovation Laboratory)

- ・ 半導体関連の共同研究ラボ
- 企業や他大学と共同研究の実施が可能
- アクセスの良い熊本市内にある熊本大学黒髪団地(南地区)に立地
- D-Squareに隣接することで、共同研究と人材育成との相乗効果を狙う

D-Square(ディースクエア)

• 自然科学研究部の大学院生や情報融合学環の学部生、文系と理系、社会と 大学等のように多様な人々や組織が融合して、新たな研究や学びを実践

文部科学省 地域の中核・特 色ある研究大学施設整備事業

高度情報専門人材の確保に向けた大学・高専機能強化事業 (ハイレベル枠)により設置

SOIL & D-square 建物外観

大学と地域企業との結節点

- URAによる地域企業とのマッチングサービスの実施
 - ▶ 熊本県産業技術センターへ派遣するURAによる地域ニーズの把握
 - > 参画機関、協力機関の半導体関連シーズ集の作成
- コアファシリティセンターを活用した、データ収集、実証・検証の場の提供
 - ▶ 地域企業の分析・評価、試作ニーズに共同で対応
 - ▶ 大学が分析したデータを収集し匿名化の上、大学間で共有
- 国内外の参画大学学生へ地域企業へのインターンシップを提供

地域中核・特色ある研究大学強化促進事業(J-PEAKS) 【取組内容の概要】

10年後の大学ビジョン:半導体集積地のモデル都市構築を先導し、世界中から多様な人材が集まる研究教育大学へ

半導体実装から社会共創研究を通じて、

地域イノベーションの実現と持続可能な産業都市構築を目指す

サプライチェーンの強靱化

半導体関連

研究力向上 生産性向上

地域企業 地域産業の新規参入

地域企業

#

地域~世界規模の 課題を総合的に解決する 結節点

社会共創エコシステムの確立

熊本県内 大学 **~~** 強み分野創出

熊本県外大学等

社会課題解決 ユーザー産業の創出 を様な人材の集まる場形成

台湾4大学

戦略1. 半導体三次元積層技術の確立・関連産業支援

研究加速

Jasm TEL SONY

- 強みである半導体・デ ジタル研究教育機構 の強化
- 他機関・企業との共同 研究、社会実装研究 促進
- 他分野研究者の半導 体研究への参入

戦略3.研究基盤の整備

研究サバティカル導入

人材育成

- 柔軟な人事制度
- 国内外の機関と連携 した教育システム
- リスキリング整備

主な指標:

半導体企業との論文数 半導体産業就職数

実装支援

- 企業の製造課題解決
- 手厚い分析支援
- ・半導体コアファシリティの 充実

保守技術管理者育成

*半導体三次元積層: 高機能で安価な製品を生み出す新技術

半導体活用

全学展開

社会共創ユニットの

連携機関を中心に産 学官機関が課題解決 に参画

知の集結

- 融合研究推進による 総合知の活用
- 多様な人材でユニット を構成

場の提供

SOIL(DXイノベ棟)、 OICセンターの活用

戦略2. 社会共創研究の推進

菊陽町「知の集積エリ

主な指標:

民間企業研究費受入額 大学発ベンチャー数 学術コンサル受入件数

ブースター

- 産官学で構成する「研 究開発戦略会議」によ る進捗管理
- PM、サポート人材等 支援人材の重点配置
- ・研究サバティカル導入
- 社会貢献を教員評価 に反映

主な指標:

研究支援体制強化

- 研究開発戦略本部の設置
- 体制一元化でシームレスな研究支援
- 柔軟な人事・育成制度で支援人材 確保

環境整備

- 新システム導入によるDX化、効率化
- 他機関と連携した研修等による技術 部門の機能強化

資金獲得強化

- ベンチャー部門新設
- 知財マネジメントの強化
- リスギリング、コアファシリティの収益化

外部組織化に向けた

取網状況 研究時間の確保

> 大学発べびチャー シードファンド

熊本大学の半導体・DS/DX教育改革の全体像

R5.4設置

半導体・デジタル研究教育機構

総合情報学部門

- ○機械学習を用いたビッグデータ解析等
- 〇応用数理(非線形解析などの決定論、 確率・統計解析などのランダム理論等)
- ○人工知能技術、eラーニングを応用 した教育等

半導体部門

- ○3次元実装技術の 研究開発推進
- ○次世代LSIデバイス の研究開発推進
- ○次世代イメージセン サの研究開発推進
- ○次世代半導体材 料研究開発推進
- 〇半導体製造DX の実践的研究
- ○先進半導体プロ セス研究推進

国内外の大学・機関等との連携

unec

(ベルギー)

國立陽明交通大學

高度情報

専門人材の

輩出増

米国政府

(語学カリキュラム構築支援等

熊本高専・久留米高専 (DDP・インターンシップ等) Jetc...

世界トップ 研究者

アカデミア人材

大学院 自然科学教育部

R7.4 設置構想

【修士】 半導体·情報専攻 入学定員120名

※既存の専攻からの振替(情報系)50名+定員増70名

【博士】 半導体·情報専攻 入学定員22名

※既存の専攻からの振替22名(情報系から5名+他分野から17名)

・3次元実装技術の高度化 ・地域企業と連携した共同 研究型インターンシップ

先端科学 研究部 (理·工)

人文社会科学 研究部等 (法•医)

進学

学士課程 専任・兼担 教員

専任教員

·研究指導

工学部

半導体デバイス工学課程 R6.4 入学定員20名(工学部課程制)

3年次編入学 20名增 ※R5定員増

※R6に半導体デバイス工学課程に定員割当

定員40

高度情報 専門人材

専門人材

IT関連企業·半導体 関連企業等

活躍する高度情報専門

人材、研究者を輩出

大学等連携推進法人

熊本県立大学

東海大学

専任教員

定員10

定員10

学環に定員割当

情報融合学環 R6.4

設置 入学定員60名(学部等連係課程)

DS総合コース

DS半導体コース